Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Schmidt, Dirk; Vernet, Elise; Jackson, Kathryn J (Ed.)The Gemini Planet Imager (GPI) is a high contrast imaging instrument that aims to detect and characterize extrasolar planets. GPI is being upgraded to GPI 2.0, with several subsystems receiving a re-design to improve its contrast. To enable observations on fainter targets and increase performance on brighter ones, one of the upgrades is to the adaptive optics system. The current Shack-Hartmann wavefront sensor (WFS) is being replaced by a pyramid WFS with an low-noise electron multiplying CCD (EMCCD). EMCCDs are detectors capable of counting single photon events at high speed and high sensitivity. In this work, we characterize the performance of the HNu ̈ 240 EMCCD from Nuvu Cameras, which was custom-built for GPI 2.0. Through our performance evaluation we found that the operating mode of the camera had to be changed from inverted-mode (IMO) to non-inverted mode (NIMO) in order to improve charge diffusion features found in the detector’s images. Here, we characterize the EMCCD’s noise contributors (readout noise, clock-induced charges, dark current) and linearity tests (EM gain, exposure time) before and after the switch to NIMO.more » « less
- 
            Schmidt, Dirk; Vernet, Elise; Jackson, Kathryn J (Ed.)The Gemini Planet Imager (GPI) is a high-contrast imaging instrument designed to directly detect and char- acterise young, Jupiter-mass exoplanets. After six years of operation at the Gemini South Telescope in Chile, the instrument is being upgraded and moved to the Gemini North Telescope in Hawaii as GPI 2.0. Several improvements have been made to the adaptive optics (AO) system as part of this upgrade. This includes re- placing the current Shack-Hartmann wavefront sensor with a pyramid wavefront sensor (PWFS) and a custom EMCCD. These changes will increase GPI’s sky coverage by accessing fainter targets, improving corrections on fainter stars and allowing faster and ultra-low latency operations on brighter targets. The PWFS subsystem was independently built and tested to verify its performance before being integrated into the GPI 2.0 instrument. This paper will present the pre-integration performance test results, including pupil image quality, throughput and linearity without modulation.more » « less
- 
            Ruane, Garreth J (Ed.)
- 
            Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)
- 
            Evans, Christopher J.; Bryant, Julia J.; Motohara, Kentaro (Ed.)
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
